5-7 December 2018 - Hong Kong, China


Ninth International Conference on Advances in Steel Structures (ICASS 2018)



Jake L.Y. Chan1,2* and S.H. Lo1

1Dept. of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

2Wo Lee Green Solutions Ltd.



Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment are examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.


Bolted end-plate joint; Plastic design; Rigid/ semi-rigid joint

Download PDF:


First call for paper:
1 January 2018
Abstract submission: (CLOSED)
1 April 2018
Notification of abstract acceptance:
on or before 16 April 2018 
Full paper submission: 
15 July 2018
Online Registration Begins:
1 August 2018
Notification of full paper acceptance:
31 August 2018
Early bird registration:
on or before 7 September 2018
Online Registration Closes:
31 October 2018
Announcement of programme:
1 November 2018
ICASS2018 December 05, 2018 08:00 AM